
Assume-Guarantee Verification

for Interface Automata

Michael Emmi1⋆, Dimitra Giannakopoulou2, and Corina S. Păsăreanu2

1 University of California, Los Angeles
mje@cs.ucla.edu

2 NASA Ames Research Center
{Dimitra.Giannakopoulou,Corina.S.Pasareanu}@email.arc.nasa.gov

Abstract. Interface automata provide a formalism capturing the high
level interactions between software components. Checking compatibility,
and other safety properties, in an automata-based system suffers from
the scalability issues inherent in exhaustive techniques such as model
checking. This work develops a theoretical framework and automated
algorithms for modular verification of interface automata. We propose
sound and complete assume-guarantee rules for interface automata, and
learning-based algorithms to automate assumption generation. Our al-
gorithms have been implemented in a practical model-checking tool and
have been applied to a realistic NASA case study.

1 Introduction

Modern software systems are comprised of numerous components, and are made
larger through the use of software frameworks. Formal analysis of such systems
naturally suffers from scalability issues. Modular analysis techniques address this
with a “divide and conquer” approach: properties of a system are decomposed
into properties of its constituents, each verified separately. Assume-guarantee
reasoning [14, 21] is a modular formal analysis technique that uses assumptions
when checking components in isolation. A simple assume-guarantee rule infers
that a system composed of components M1 and M2 satisfies safety property P by
checking that M1 under assumption A satisfies P (Premise 1) and discharging
A on the environment M2 (Premise 2). Finding suitable assumptions can be
non-trivial, and has traditionally been performed manually.

Previous work [8] has proposed a framework using learning techniques to au-
tomate assumption generation for the aforementioned rule; that work addresses
safety property checking for Labeled Transition Systems (LTSs). LTSs inter-
act through synchronization of shared actions, and have been used extensively
in the analysis of high-level abstract systems, for example at the architecture
level [19]. However, as LTSs do not distinguish between input/output actions
that a component can receive/emit, respectively, they are often inadequate for
more detailed analyses, testing, or test-case generation [23].

⋆ This work was completed during an MCT internship at NASA Ames.

I/O automata [17] and interface automata [9] are formalisms that differen-
tiate between the input and output actions of a component. The main distin-
guishing factor between the two formalisms is that I/O automata are required to
be input-enabled, meaning they must be receptive at every state to each possible
input action. For interface automata, some inputs may be illegal in particular
states, i.e., the component is not prepared to service these inputs. Two com-
ponents are said to be compatible if in their composition each component is
prepared to receive any request that the other may issue.

Compatibility is an important property for the analysis of component-based
systems [16]. In the case study we discuss in Section 7, compatibility checking
uncovered subtle errors that were undetectable when components were mod-
eled as LTSs. Consequently, parts of the model were unexplored, even though
the system is deadlock-free. (Note: these particular errors are undetectable if
components are assumed input-enabled, as I/O automata are.)

Checking compatibility and traditional safety properties of interface automata
suffers from the inherent scalability issues appearing in model checking tech-
niques. In this work we develop a theoretical framework with automated al-
gorithms for modular verification of systems modeled as interface automata.
Specifically, we provide the first sound and complete assume-guarantee rules for
checking properties of interface automata. This includes rules for compatibility
checking, traditional safety properties, and alternating refinement (the notion of
refinement associated with interface automata [9]).

We define a construction that reduces compatibility and alternating refine-
ment to checking error state reachability, by adding to each component tran-
sitions to error states. We provide algorithms that automate the application
of the assume-guarantee rules by computing assumptions (we provide both a
direct and a learning-based construction of the assumptions). Although we re-
duce compatibility checking to error detection, we cannot simply use the rules
and frameworks from our previous work [8]; that work assumed error states to
be introduced only by checking the property in Premise 1 and discharging the
assumption in Premise 2; in this work error states are also introduced by our
reduction. We describe this further in Sections 5 and 6.

For a system where component compatibility has been established we also
define an optimized assumption construction when checking traditional safety
properties. Our new algorithms have been implemented in the LTSA model
checking tool [18] and have been applied to a NASA case study.

2 Background

Labeled Transition Systems. A labeled transition system (LTS) A is a tuple
〈Q, a0, αA, δ〉, where Q is a finite set of states, a0 ∈ Q is an initial state, αA is
a set of observable actions called the alphabet of A, and δ ⊆ Q × αA × Q is a
transition relation. For readability, we write a

α
→ a′ when 〈a, α, a′〉 ∈ δ, in which

case we say that α is enabled at a, and that a′ is a destination of α from a. A
state a′ is reachable from a if there exists n ∈ N and sequences 〈ai〉0≤i≤n

and

〈αi〉0≤i<n
with a = a0 and a′ = an such that ai

αi→ ai+1 for 0 ≤ i < n. The LTS

A is deterministic if δ is a function (i.e., for all a ∈ Q and α ∈ αA, a
α
→ a′ for at

most one state a′ ∈ Q), and is otherwise non-deterministic.
We use π to denote a special error state without enabled transitions. The

error completion of A is defined to be the LTS Aπ = 〈Q ∪ {π}, a0, αA, δ′〉 where

δ′ agrees with δ, and adds transitions a
α
→ π for all states a where α is not

enabled. We say A is safe when π is not reachable from the initial state.

Parallel Composition. The parallel composition operator ‖ is (up to isomor-
phism) a commutative and associative operator on LTSs. Given LTSs A =
〈QA, a0, αA, δA〉 and B = 〈QB, b0, αB, δB〉, the composition A‖B is an LTS
with states QA ×QB,3 initial state 〈a0, b0〉, alphabet αA∪αB, and a transition
relation defined by the rules (including the symmetric versions):

a
α
→ a′ a′ 6= π α /∈ αB

〈a, b〉
α
→ 〈a′, b〉

,
a

α
→ a′ b

α
→ b′ a′, b′ 6= π

〈a, b〉
α
→ 〈a′, b′〉

, and
a

α
→ π

〈a, b〉
α
→ π

.

Traces. A trace t of length n on an LTS A is a finite sequence 〈αi〉1≤i≤n
of

enabled actions on A starting from the initial state: formally, there exist states
a1, . . . , an ∈ Q such that ai−1

αi→ ai for 1 ≤ i ≤ n. The set of traces of A is called
the language of A, denoted L(A). A trace t may also be viewed as an LTS, called
a trace LTS, whose language consists of all prefixes of t (including t itself). As
the meaning will be clear from the context, we will use t to denote both a trace
and a trace LTS. We write t↓Σ for the trace obtained from t by removing every
occurrence of an action outside of Σ.

Safety properties. We call a deterministic LTS without the state π a safety
LTS (any non-deterministic LTS can be made deterministic with the standard
algorithm for automata). A safety property P is specified as a safety LTS whose
language L(P) defines the set of acceptable behaviors over αP . An LTS M
satisfies P , written M |= P , if and only if for every trace t of M , t↓αP is a trace
of P . Note that M |= P can be checked algorithmically by searching for a trace
to π in M composed with the error completion of P .

The L* learning algorithm. Our algorithms for automating assume-guarantee
reasoning use the L* algorithm for learning appropriate assumptions. L* was de-
veloped by Angluin [3] and later improved by Rivest and Schapire [22]. To syn-
thesize an automaton for a regular language U over alphabet Σ, the algorithm
interacts with a “black box”, called a teacher, who answers questions about U .
The teacher answers membership queries (given a string s, is s ∈ U?), and refine-
ment queries (given an automaton A over Σ, does L(A) = U?). We henceforth
refer to the latter query as a conjecture, and the former simply as a query. If
the conjectured automaton A’s language is not U , the teacher is obligated to
produce a counterexample trace in the symmetric difference of L(A) and U . This
algorithm is guaranteed to terminate with a minimal automaton for U which
has at most n + 1 states, where n is the number of incorrect conjectures.

3 Each state 〈a, π〉 or 〈π, b〉 in the composition is identified with π.

10 2 3 4

5

6

msg?

ok!

fail!

send!

ack?

nack?

send!

ack?

nack?

msg ok fail

send ack nack

(a) Amsg

10

msg!

ok?

msg ok fail

(b) Ausr

10

2 3 4

5

send ack nack

send?

ack!

nack!send?

send?

ack!

busy;

(c) Aenv

10 2 3 4

5

6

send!

ack?

nack?

send!

ack?

nack?

send ack nack

msg;

ok;

fail;

(d) Asys = Amsg‖Ausr

Fig. 1: A messaging system comprised of three components (a, b, and c). The dotted
transition to the error state π in (d) originates from the error completed automaton
A?

usr (explained in Sec.3.3), and survives in the composition A?
msg‖A

?
usr. We omit other

transitions due to error completion for readability.

3 Interface Automata (IA)

Definition 1. An interface automaton A is a tuple 〈QA, IA, αAI, αAO, αAH, δA〉
where QA is a set of states, IA ∈ QA is the initial state, αAI, αAO, and
αAH are respectively disjoint input, output, and internal alphabets (we define
αA = αAI ∪ αAO ∪ αAH), and δA ⊆ QA × αA × QA is a transition relation.

Our running example of composable interface automata is borrowed from [9].

Example 1. The automaton Amsg (Fig. 1a) transmits messages over a lossy com-
munication channel. The input actions msg, ack, and nack (resp., send, ok, and
fail) are depicted by incoming (resp., outgoing) arrows to the enclosing box,
and question (resp., exclamation) marks on edge labels. Internal actions (see
Fig. 1c) do not appear on the interface boundaries, and suffixed by semicolons
on edge labels.

The semantics of interface automata are defined here by reduction to la-
beled transition systems (LTSs). In particular, given an interface automaton
〈QA, IA, αAI, αAO, αAH, δA〉, lts(A) is the LTS 〈QA, IA, αA, δA〉. We lift the se-

mantics from LTSs by writing a
α
→ a′ when lts(A) has such a move, we say A is

(non-) deterministic when lts(A) is, and an action α is enabled in a state a when
it is in lts(A). The traces and the language of A are defined similarly.

For the remainder of this section we fix A and B to be interface automata.

Definition 2. A and B are composable when their signatures do not conflict,
i.e. αAI ∩ αBI = αAO ∩ αBO = αAH ∩ αB = αA ∩ αBH = ∅.

Example 2. The “user” component of Figure 1b expects that the message-sending
component of Figure 1a will never encounter failure. This implicit assumption
is a key feature of IAs; its expressed here by the lack of a fail?-labeled edge
from state 1 of Ausr.

The communication channel “environment” of Figure 1c either transmits a
message on the first attempt, or delays on the first attempt, and transmits on
the second. The internal action busy is not observed by other components. Both
Ausr and Aenv are composable with the Amsg, albeit on disjoint interfaces.

Note that composable IAs need not have any common actions, but each common
action must be an input of one and an output of the other. We identify the set
of common actions with αShared(A, B).

Definition 3. When A and B are composable, the composition of A and B,
written A‖B, is the interface automaton C = 〈QC , IC , αCI, αCO, αCH, δC〉,
where 〈QC , IC , αC, δC〉 = lts(A)‖lts(B), and the alphabet is partitioned as

– αCI = αAI ∪ αBI \ αShared(A, B),
– αCO = αAO ∪ αBO \ αShared(A, B), and
– αCH = αAH ∪ αBH ∪ αShared(A, B).

The composition of an IA A and an LTS T is an IA extending A by substituting
lts(A)‖T for lts(A).

Example 3. Since the constituents of Asys (Fig. 1d) synchronize on fail, and
Ausr failure never occurs, there are no transitions from state 6 in the composi-
tion. The signature of Asys does not mention common actions of Amsg and Ausr

which have been internalized.

3.1 Compatibility

Although the semantics of a single IA is the same as its underlying LTS, the dis-
tinction between input and output actions results in a more stringent behavioral
specification between components that cannot be checked for LTSs.

Definition 4. Given two composable automata A and B, a state 〈a, b〉 of A‖B
is illegal if some action α ∈ αShared(A, B) is an enabled output action in a
(resp., b), but a disabled input action in b (resp., a).

Example 4. State 6 of Asys (Fig. 1d) is illegal, since fail is an enabled output
in state 6 of Amsg and a disabled input in state 1 of Ausr.

Definition 5. The automaton A is closed when αAI = αAO = ∅, and is other-
wise open.

0

send?

send ack nack

(a) C1

0 1

send?

ack!

send ack nack

nack!

(b) Ebad

0 1send?

ack!

nack! 2

send ack nack

send?

(c) C3

0 1send?

ack!

nack! send?2 3

send ack nack

ack!

(d) Egood

Fig. 2: Four environments for Asys (Fig. 1d).

The optimistic notion of compatibility between IAs [9] is associated with the
existence of illegal states in their composition. An open automaton with illegal
states is not necessarily incompatible with its environments, since illegal states
may not be reachable in the composition.

Definition 6. When A‖B is closed, A and B are said to be compatible, written
A ∼ B, if A‖B does not have reachable illegal states.

3.2 Refinement

For convenience we will write α ∈ I-EnabledA(a) (resp., α ∈ O-EnabledA(a))
when α is an enabled input (resp., output) action in a. The internal-closure
of a, written H-ClosureA(a), is the set of states reachable from a via internal

actions. An externally observable move, denoted a
α
 a′, exists when a1

α
→ a2

for a1 ∈ H-ClosureA(a) and a′ ∈ H-ClosureA(a2), in which case we say a′ is an
external destination from a by α. An action α is an externally enabled input
(resp., output) in a, written α ∈ I-ExtEnA(a) (resp., α ∈ O-ExtEnA(a)), if α is
enabled in all (resp., some) states of H-ClosureA(a).

Definition 7. A binary relation � ⊆ (QA × QB) is an alternating simulation
from A to B if for all a ∈ QA and b ∈ QB such that a � b:

(1) I-ExtEnA(a) ⊇ I-ExtEnB(b).
(2) O-ExtEnA(a) ⊆ O-ExtEnB(b).

(3) For all actions α ∈ O-ExtEnA(a)∪I-ExtEnB(b) and states a′ such that a
α
 a′,

there exists a state b′ such that b
α
 b′ and a′ � b′.

We say A refines B, written A � B, if αAI ⊇ αBI, αAO ⊆ αBO and there
exists an alternating simulation �′ from A to B such that 〈IA, IB〉 ∈�′.

Example 5. Figure 2 gives four automata with signatures matching Aenv’s (Fig. 1c).
One can easily check that Aenv � Ebad, Egood, but Aenv 6� C1, C3.

The following refinement properties are known [9].

Theorem 1. The alternating simulation relation over interface automata is re-
flexive and transitive.

Theorem 2. Let A, B, and C be interface automata such that B and C are
composable, and αBI ∩ αCO ⊆ αAI ∩ αCO. If A ∼ C and B � A, then B ∼ C
and B‖C � A‖C.

3.3 Checking compatibility and refinement

We reduce compatibility and refinement checking to model checking on automata
completed with error states.

Definition 8. The input (resp., output) error completion of A, denoted A?

(resp., A!), extends A with the state π and the transition a
α
→ π whenever α

is a disabled input (resp., output) action at a.

Supposing that A and B are composable but incompatible, there must exist
a transition to π in A?‖B?, since either A or B performs an action which the
other does not anticipate, causing either B? or A?, respectively, to move to π.
Likewise, if A and B are of the same signature but the behaviors of A are not
contained within those of B, then either A performs some output action which
B cannot, in which case B! moves to π, or B performs some input action which
A cannot, in which case A? moves to π.

Theorem 3 (Checking Compatibility). Let A ‖ B be a closed automaton.
Then A ∼ B if and only if π is not reachable in A?‖B?.

Theorem 4 (Checking Refinement). Let A and B be safe interface au-
tomata with matching signatures such that B is deterministic. A � B if and
only if π is not reachable in A?‖B!.

We omit the proofs in the interest of space.

Example 6. Amsg, Ausr, and Ebad (Figs. 2b, 1a, and 1b) are incompatible since
π is reachable in the composition of A?

msg, A
?
usr, and E?

bad by the sequence msg;

send; nack; send; nack; fail; (see Fig. 1d). On the other hand, Aenv (Fig. 1c) does
not refine C1 (Fig. 2a) since π is reachable in the composition of A?

env and C!
1 by

the sequence send; ack;.

4 Assume-guarantee reasoning for interface automata

Although in the simple setting of Example 5 the system and environment are
relatively small, their composition could, in general, be very complex. We then
seek to find a smaller environment model which is descriptive enough to prove
the absence of error states in the composition, in the case that there are none.

Figure 3 introduces assume-guarantee rules for reasoning with interface au-
tomata. Since composition and compatibility are only defined for composable
interface automata, we’ll henceforth assume that the automata said to take part
in these relations are composable. For the remainder of this section, the symbols
M1, M2, S, and A range over interface automata, and P denotes a property
specified by a safety LTS. Completeness, in the present setting, means that an
assumption for use in the premises of rule exists whenever the conclusion holds.

Theorem 5. IA-Compat, IA-Prop, IA-AltRef are sound and complete.

IA-Compat IA-Prop IA-AltRef

Premise 1 M1 ∼ A M1‖A |= P M1 ∼ A ∧ M1‖A � S

Premise 2 M2 � A M2 |= lts(A) M2 � A

Conclusion M1 ∼ M2 M1‖M2 |= P M1 ∼ M2 ∧ M1‖M2 � S

Fig. 3: Assume-guarantee rules for interface automata. Rule IA-Compat gives a mod-
ular characterization of compatibility; IA-Prop is the IA instantiation of the classical
safety rule [8]; IA-AltRef modularly establishes alternating refinement with respect
to a high-level specification S.

Soundness of Rule IA-Compat is an immediate consequence of Theorem 2.
Soundness of Rule IA-Prop is guaranteed by the soundness of the original rule
for transition systems [11, 8]. Soundness of Rule IA-AltRef is guaranteed by
Theorems 1 and 2. Completeness, for any of the rules, follows directly by replac-
ing A with M2.

Since Rule IA-AltRef is only meaningful for open systems, and the current
work deals with closed systems, its study is deferred for future work.

5 Weakest Assumptions

A central notion in the work on automatic assumption generation for assume-
guarantee rules is the construction of a “weakest assumption”. For a rule and a
given alphabet (the communication alphabet between M1 and M2) the weakest
assumption AW is such that, for any assumption A that makes the premises of
a rule hold, A necessarily refines AW , i.e., AW is as abstract as possible.

Lemma 1. Given a rule and its associated weakest assumption AW , the premises
of the rule hold for AW if and only if the conclusion of the rule holds.

Therefore, to automate assume-guarantee reasoning based on a rule, it is suf-
ficient to build the corresponding AW and to use it when checking the premises
of the rule. We begin with a description of a direct construction of the weakest
assumptions for various rules. Since this construction involves expensive deter-
minization, we also define in the next section algorithms that learn the traces of
AW as needed, using L*. Let us first introduce the following definition.

Definition 9. The mirror of A, written Mirror(A), is an automaton identi-
cal to A, except for a symmetric alphabet partitioning: αMirror(A)I = αAO,
αMirror(A)O = αAI, and αMirror(A)H = αAH.

Rule IA-Compat. The weakest assumption AW of an interface automaton M1

is an interface automaton with: αAI
W

= αMO
1 , αAO

W
= αM I

1, and αAH
W

= ∅. It
is constructed from M ?

1 as follows: 1) determinize4; 2) remove all transitions to

4 The determinization of our interface automata identifies sets containing π, with π.

π (intuitively, all the inputs that M1 does not accept lead to error in M ?
1 , so its

environment should not provide these), and 3) mirror the resulting automaton.
The above construction is similar to the property extraction step in the gen-

eration of assumptions when checking safety properties of LTSs [11]. However in
[11], a completion step adds transitions to an (accepting) sink state. For com-
patibility, such completion of M ?

1 would add outputs (M ?
1 is input complete),

and would force the environment to accept more inputs than necessary, i.e., the
obtained assumption would not be the weakest. Also, the extra mirroring step
here is needed to obtain a correct representation of the environment.

Rule IA-Prop. As mentioned, Rule IA-Propis the same as the original rule
for LTSs [11, 8], so the same notion of a weakest assumption applies. However, in
the context of interface automata, the knowledge that M1 ∼ M2 holds may be
used for defining a weaker assumption with fewer states than the one in previous
work [8]. Let AW be the weakest assumption for M2 with respect to M1 and P , as
previously defined [11]. AW is an interface automaton with: αAI

W
= αMO

1 ∩αM I
2,

αAO
W

= αM I
1 ∩αMO

2 , and αAH
W

= αP ∩αMH
2 . Assume that we already checked

M1 ∼ M2 (using e.g. Rule IA-Compat) and it holds. We build assumption AC

such that

L(AC) = L(AW) \ {t | ∃u ∈ (αMO
1)+ s.t. tu /∈ L(AW)}.

In other words, the assumption does not restrict the behaviors of M1 by non-
acceptance of M1’s outputs (i.e. the assumption is compatible with M1). AC

is constructed from M1‖P π using the same steps of previous work [11], with
the following differences. Since M1 ∼ M2 holds, backwards error propagation is
performed along output transitions in addition to internal transitions. Therefore
AC has potentially fewer states than AW . Moreover, the resulting automaton
needs to be mirrored since we are dealing with interface automata.

Lemma 2. Let M1 ∼ M2, and let AW and AC be the assumptions defined above.
Then M1‖AC |= P ∧ M2 |= lts(AC) ⇐⇒ M1‖M2 |= P .

The above Lemma establishes that AC , which has at most as many states as
AW , is the weakest assumption. For Rule IA-Prop, we will henceforth use the
term weakest assumption (AW) to refer to AC .

6 Learning-based assume-guarantee reasoning

We develop iterative techniques based on L* [3, 22] to check M1 ‖ M2 compo-
sitionally, by automatically computing the weakest assumptions for Rules IA-

Compat and IA-Prop. We provide L* with teachers using error state reacha-
bility analysis to answer membership queries and conjectures. We use L* con-
jectures as an assumption to check the premises of the rules (using an oracle
for each premise). When both oracles return OK then the premise is satisfied,
and the analysis terminates. Failure of Premise 1 gives L* a counterexample
to refine its conjecture, while failure of Premise 2 either corresponds to a real

system violation (and the analysis terminates) or gives L* a counterexample for
refinement.

The techniques presented here are similar in spirit to existing techniques [8],
but must be significantly more complex to address the non-trivial notions of
compatibility and alternating refinement (the techniques learn the traces of the
new weakest assumptions that we defined in the previous section). Indeed ex-
isting algorithms [8] check a strictly weaker property—a consequence of not
distinguishing input from output actions.

We make use of the following auxiliary procedures in our L* teachers.

simulate(M,t) returns a set of M-states to which t is a trace, or π with the
shortest prefix of t tracing to π, or ∅ with the shortest prefix of t which is
not a trace of M.

analyze(M‖N) returns ERROR(M) (resp., ERROR(N)) when π is reachable in an
M-component (resp., N-component) of the composition, and otherwise OK.

Algorithm for compatibility. In our algorithm for obtaining the weakest as-
sumption for Rule IA-Compat, we use the procedures in Fig. 4 for answering
queries and conjectures. Oracle 1 uses Theorem 3 to check M1 ∼ A, while
Oracle 2 uses Theorem 4 to check M2 � A. If either case fails, the L* teacher
emits a counterexample trace witnessing such failure. For the case of Oracle 2,
further analysis determines whether the trace represents an actual incompati-
bility between M1 and M2, or the assumption needs further refinement. If the
trace turns out to be an error in M1, or an error in M2 which does not block M1,
M1 6∼ M2; otherwise the trace is not a feasible incompatibility of the system, so
the assumption needs refinement.

procedure Query-IA-Compat(t)

1: (states,) := simulate(M?
1 , t)

2: if π ∈ states then

3: return NO

4: else if states = ∅ then

5: return NO

6: end if

7: return YES

procedure Oracle1-IA-Compat(A)

1: (result,t) := analyze(M?
1 ‖A

?)

2: t := t ↓αA

3: if result = ERROR then

4: return REFINE(t)

5: else

6: return OK

7: end if

procedure Oracle2-IA-Compat(A)

1: (result,t) := analyze(M?
2 ‖A

!)

2: if result = OK then

3: return OK

4: end if

5: t := t ↓αA

6: (states,t’) := simulate(M?
1 , t)

7: if π ∈ states then

8: return INCOMPATIBLE

9: else if states = ∅
or result = ERROR(A) then

10: return REFINE(t’)

11: else if result = ERROR(M?
2) then

12: return INCOMPATIBLE

13: end if

Fig. 4: The L* Teacher for Rule IA-Compat.

Example 7. Our teacher for Rule IA-Compat receives a total of four conjectures
when M1 and M2 are given by Asys and Aenv (Figs. 1d, 1c), respectively. The first
and second conjectures are the automata C1 and Ebad (Figs. 2a, 2b), respectively,
which Example 6 shows violate Premises 2 and 1 of Rule IA-Compat. The third
conjecture C3 (Fig. 2c) is also incompatible with Asys, since the cycle formed
between states 1 and 2 allow an arbitrary number of consecutive nacks. The
final conjecture, Egood (Fig. 2d) is refined by Aenv and adequate enough to prove
compatibility with Asys.

Algorithm for property safety. Although the LTS safety checking algorithm
of [8] can soundly be applied to interface automata, the knowledge about com-
patibility between automata allows us to develop an optimized algorithm for
checking property safety. To do so, we must first consider controllability.

Definition 10. Let A be an interface automaton, and t ∈ αA a word. The
controllable prefix of t (w.r.t. A), written ControlPrefA(t) is the longest prefix
of t ending in an output or internal action of A.

Intuitively, the controllable prefix corresponds to the period of time a particular
component is dictating a trace. In our optimized safety checking algorithm, we
consider incompatibilities arising from any externally controlled sequence ap-
pended to the end of the control prefix, not just the particular uncontrollable
suffix of the trace. We extend simulate to account for this behavior.

ext simulate(M,t) extends simulate(M,t) by additionally returning ERROR

together with the shortest trace to π, when such an error can be reached via
a prefix of t followed by a sequence of uncontrollable actions.

The key difference between our algorithm (that uses the procedures in Fig. 5
for queries and conjectures) and previous work [8] is that queries here replace
the standard automata simulation with ext simulate. The extension accounts
for the fact that error states are propagated along output transitions in addi-
tion to internal ones in M1‖P π (recall, these actions correspond to ones that
A cannot control). Moreover, when an assumption must be refined, the teacher
returns to L* the controllable prefix of the counterexample that is obtained from
reachability analysis (see line 4 in Oracle 1 and line 5 in Oracle 2).

Correctness. Granting Lemma 3, we are guaranteed that either L* terminates
with the weakest assumption, or that R does not hold. We omit the proof in the
interest of space.

Lemma 3. Let R be an assume-guarantee rule in the context of interface au-
tomata M1 and M2 (and if applicable the safety LTS P), and let AW be the
weakest assumption for R. Then

(i) Query-R(t) returns YES iff t is a trace of AW , and
(ii) Conjecture-R(A) returns

(a) OK iff the conclusion of R holds,
(b) INCOMPATIBLE or PROPERTY VIOLATION if the conclusion of R does not

hold, and otherwise
(c) a trace in the symmetric difference of L(A) and L(AW).

procedure Query-IA-Prop(t)

1: (states,) :=

ext simulate(M1‖P
π,

ControlPrefA(t))
2: if π ∈ states then

3: return NO

4: end if

5: return YES

procedure Oracle1-IA-Prop(A)

1: (result,t) := analyze(M1‖P
π‖A)

2: t := t ↓αA

3: if result = ERROR then

4: return REFINE(ControlPref A(t))
5: else

6: return OK

7: end if

procedure Oracle2-IA-Prop(A)

1: (result,t) := analyze(M2‖A
π)

2: t := t ↓αA

3: if result = ERROR then

4: if Query-IA-Prop(t) = YES then

5: return REFINE(ControlPref A(t))
6: else

7: return PROPERTY VIOLATION

8: end if

9: else

10: return OK

11: end if

Fig. 5: The L* Teacher for Rule IA-Prop.

7 Experience

The ARD Case Study. Autonomous Rendezvous and Docking (ARD) de-
scribes a spacecraft’s capability of locating and docking with another spacecraft
without direct human guidance. In the context of a NASA project, we were
given UML statecharts describing an ARD protocol at a high level of abstrac-
tion, along with some required properties in natural language, for example: “good
values from at least two sensors are required to proceed to the next mode.”

The model consists of sensors (GPS, StarPlanetTracker, InertialNavigation),
used to estimate the current position, velocity, etc. of the spacecraft, and “modes”
that constitute a typical ARD system (see Figure 6). The ARD software moves
sequentially through the modes, exhibiting different behavior in each. The Or-
bitalState component takes sensor readings and reports to the mode-related
software whether it obtained good readings from enough sensors to calculate a
reasonable spacecraft state estimate for ARD. The ARD software enables or dis-
ables the orbital state (via enableNavigation and disableNavigation actions,
respectively), reads the current estimate (via the read action), and requests for
an update of the state estimation (via refresh). The sensors may also fail, as
observed through the failed actions.

Study Set-Up. We have extended the LTSA tool [18] to provide support for
expressing interface automata and also with algorithms for (1) compatibility and
refinement checking and (2) learning-based compositional verification for inter-
face automata for Rules IA-Compat and IA-Prop. In an initial study of the
ARD system we translated the UML statecharts and their expected properties
into LTSs for LTSA; for the current study we refined these LTSs into Interface
Automata, resulting in approximately 1000 lines of input code for the LTSA.

ARD

Modes
failed

enableNavigation

disableNavigation

read

refresh

Orbital

State
StarPlanetTracker

GPS

InertialNavigation

OrbitalStateWithSensors

failed

failed

Fig. 6: Architecture of ARD protocol

Model Incompatibilities. Checking compatibility in the ARD system uncov-
ered subtle errors that were undetected in our original study using simple LTS
analysis. One incompatibility concerned the OrbitalState sub-system, which is
made up of an Estimator and three Counters; the counters record the number of
good readings obtained for position, velocity and attitude; estimates are updated
through the refresh action. Checking compatibility between the Estimator and
the Counters uncovered an error that prevented a significant portion of the sys-
tem from being exercised.

We illustrate this error with a simplified OrbitalState (see Figures 7 and 8)
that estimates position only with a single sensor. When the estimator refreshes,
it gets a reading from the sensor. If the reading is sensor good, the estimator
increments the counter. The estimator then gets the counter value get val; the
estimate becomes est poor when this value is 0, and is otherwise est good. In
intermediate states the estimate is est updating. Incompatibility between the
two components is illustrated by trace: <refresh, sensor good, increment,

get val, return.1, refresh, sensor good, increment>, where the estima-
tor tries to increment the counter at its max value. The error occurs because the
counter is not reset when it should be (i.e., after each refresh operation). If LTSs
were used instead of interface automata, incrementing a counter at its max value
would simply not be possible in the composition. Despite this fact, the system
would not deadlock, because of the self-loops in the estimator. One could write
liveness properties to ensure that certain behaviors are always possible in the
system, but it is much simpler and less costly to check for a pre-defined notion
of compatibility that does not require specification.

Results and Discussion. After correcting the incompatibilities in the Orbital-
State component, we applied our compositional algorithms system-wide level.
We divided the ARD model into two components: ARDModes (representing M1)
and OrbitalStateWithSensors (representing M2); we checked that compatibility
and a safety property (the sensor quality property, mentioned earlier) hold. The
results in Table 1 compare running LTSA for non-compositional verification with
learning-based assume-guarantee reasoning. For each of the runs we report the
maximum number of states and transitions explored (separated by the corre-
sponding premise), the analysis time, and the generated assumption’s number

1

0 2

3

get_val

increment reset

reset?

increment?
g
et

_
v
al

?

g
et

_
v
al

?

retu
rn

[0
]!

retu
rn

[1
]!

return[0..1]

Fig. 7: The ARD counter

1

0

2

3

get_valincrement

in
crem

en
t!

get_val!

return[0]?

re
tu

rn
[1

]?

return[0..1]

4

5re
fr

es
h
?

ref
res

h?

est_updating! est_updating!

est_updating!

est_
g
o
o
d
!

est_poor!

sensor_good?

sen
so

r_
p
o
o
r?

est_poor

est_good

est_updating

sensor_poor

sensor_good

refresh

Fig. 8: The ARD position estimator

of states. The experiments were run on a 64-bit Sun machine running Windows
and a 1GB Java virtual machine.

Check
Non-compositional Compositional

States Transitions Time Rule States Transitions |A| Time

Compatibility 2434K 16612K 37s
IA-Compat

35 445s
Prem. 1 5K 34K
Prem. 2 182K 864K

Property 2438K 16634K 36s
IA-Prop

74 483s
Prem. 1 20K 113K
Prem. 2 433K 3393K

Table 1: Analysis results for a NASA ARD model.

During compositional verification, the largest state spaces explored were dur-
ing the second premises for the assume-guarantee rules (highlighted in bold in
Table 1). This is approximately one order of magnitude smaller than the state
space explored when checking M1‖M2 directly. On the other hand, assume-
guarantee reasoning took 445s (483s) as compared to 37s (36s) for checking
compatibility (resp., safety property) directly. This time penalty is due to the
iterative nature of the learning algorithm and to the relatively large number
of states in the generated assumption. Previous studies [8, 2] on learning for
compositional reasoning in other formalisms showed that the approach does not
incur such time penalty when smaller assumptions are obtained (i.e., less than
10 states).

The results reported in Table 1 for checking the safety property use the op-
timized algorithm presented in Section 6. Application of our algorithm from [8]
(that views the two components as LTSs and does not take advantage of com-
patibility) resulted in an assumption of 77 states. The savings in terms of the
assumption size (3 states) are not significant in this case. The reason is that the

components in our study exhibit behavior where inputs and outputs strictly al-
ternate. More pronounced savings may be obtained in systems where occurrences
of chains of output and internal actions may lead to the error state. Finally, we
have also experimented with an algorithm that combines Rules IA-Compat

and IA-Prop: the hybrid algorithm computes an assumption that guarantees
both compatibility and property satisfaction. With this algorithm, we obtained
an assumption of 94 states (in 3930 seconds). This indicates that checking the
two properties separately results in smaller assumptions.

We remark that the largest assumptions built by our frameworks are still
much smaller than the components that they represent in the compositional
rules (M1 has over 5K states and M2 has over 143K states). Therefore, the cost
of re-verification, for example, using assume-guarantee reasoning will be much
smaller than non-compositional verification.

8 Related work

Several frameworks have been proposed to support assume-guarantee reason-
ing [14, 21, 6, 12], but their practical impact has been limited by their need for
human input in defining appropriate assumptions. Frameworks using L* to learn
assumptions or component interfaces have been developed in many settings, for
example: assume-guarantee reasoning of LTSs [11, 8], synthesizing interfaces for
Java classes [1], and symbolic model checking using NuSMV [2]. Unlike these
approaches, we distinguish input actions from output actions, allowing stricter
property checking (i.e., ensuring compatibility).

Several optimizations to learning for assume-guarantee reasoning have also
been studied. Alternative system decompositions [7, 20] and discovering small
interface alphabets [10, 4] may positively affect the performance of learning. Our
methods are orthogonal to these, as we consider an extended transition system.

Another approach [13] uses predicate abstraction and refinement to synthe-
size interfaces for software libraries. This work does not use learning, nor does
it reuse the resulting interfaces in assume-guarantee verification. Several ap-
proaches have been defined to automatically abstract a component’s environ-
ment to obtain interfaces [15, 5], however these techniques are not incremental
and do not differentiate between inputs and outputs.

9 Conclusion

In this work we have developed a theoretical framework for the automated com-
positional verification of systems modeled with interface automata. We provide
sound and complete assume-guarantee rules, and learning-based algorithms tar-
geting the weakest-possible assumption for each rule. An evaluation of our algo-
rithms on an application of a NASA case study is also presented, based on the
implementation of the algorithms in a practical model checking tool.

References

1. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifica-
tions for java classes. In Proc. 32nd POPL, 2005.

2. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by
learning assumptions. In Proc. 17th CAV, 2005.

3. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2), 1987.

4. S. Chaki and O. Strichman. Optimized L* for assume-guarantee reasoning. In
Proc. 13th TACAS, 2007.

5. S.C. Cheung and J. Kramer. Checking safety properties using compositional reach-
ability analysis. TOSEM, 8(1), 1999.

6. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In
Proc. 4th LICS, 1989.

7. J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to do: An
investigation of decomposition for assume-guarantee reasoning. In ISSTA, 2006.

8. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions
for compositional verification. In Proc. 9th TACAS, 2003.

9. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proc. 8th
ESEC/FSE, 2001.

10. M. Gheorghiu, D. Giannakopoulou, and C. S. Păsăreanu. Refining interface alpha-
bets for compositional verification. In Proc. 13th TACAS, 2007.

11. D. Giannakopoulou, C. S. Păsăreanu, and H. Barringer. Assumption generation
for software component verification. In Proc. 17th ASE, 2002.

12. O. Grumberg and D. E. Long. Model checking and modular verification. In Proc.
2nd CONCUR, 1991.

13. T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In Proc. 10th
ESEC/FSE, 2005.

14. C. B. Jones. Specification and design of (parallel) programs. In Proc. 9th IFIP
Congress, 1983.

15. J.-P. Krimm and L. Mounier. Compositional state space generation from Lotos
programs. In Proc. 3rd TACAS, 1997.

16. E. Letier, J. Kramer, J. Magee, and S. Uchitel. Monitoring and control in scenario-
based requirements analysis. In Proc. 27th ICSE, 2005.

17. N. Lynch and M. Tuttle. An introduction to input/output automata. Centrum
voor Wiskunde en Informatica, 2(3), September 1989.

18. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. John
Wiley & Sons, 1999.

19. J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software
architectures. In Proc. 1st WICSA, 1999.

20. W. Nam and R. Alur. Learning-based symbolic assume-guarantee reasoning with
automatic decomposition. In Proc. 4th ATVA, 2006.

21. A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logic and Models of Concurrent Systems, 1984.

22. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-
quences. In Proc. 21st STOC, 1989.

23. M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. Online testing with model
programs. In Proc. 10th ESEC/FSE, 2005.

